scanpy.tl.score_genes#
- scanpy.tl.score_genes(adata, gene_list, *, ctrl_as_ref=True, ctrl_size=50, gene_pool=None, n_bins=25, score_name='score', random_state=0, copy=False, use_raw=None, layer=None)[source]#
Score a set of genes [Satija et al., 2015].
The score is the average expression of a set of genes subtracted with the average expression of a reference set of genes. The reference set is randomly sampled from the
gene_pool
for each binned expression value.This reproduces the approach in Seurat [Satija et al., 2015] and has been implemented for Scanpy by Davide Cittaro.
- Parameters:
- adata
The annotated data matrix.
- gene_list
The list of gene names used for score calculation.
- ctrl_as_ref default:
True
Allow the algorithm to use the control genes as reference. Will be changed to
False
in scanpy 2.0.- ctrl_size default:
50
Number of reference genes to be sampled from each bin. If
len(gene_list)
is not too low, you can setctrl_size=len(gene_list)
.- gene_pool default:
None
Genes for sampling the reference set. Default is all genes.
- n_bins default:
25
Number of expression level bins for sampling.
- score_name default:
'score'
Name of the field to be added in
.obs
.- random_state default:
0
The random seed for sampling.
- copy default:
False
Copy
adata
or modify it inplace.- use_raw default:
None
Whether to use
raw
attribute ofadata
. Defaults toTrue
if.raw
is present.Changed in version 1.4.5: Default value changed from
False
toNone
.- layer default:
None
Key from
adata.layers
whose value will be used to perform tests on.
- Returns:
Returns
None
ifcopy=False
, else returns anAnnData
object. Sets the following field:adata.obs[score_name]
numpy.ndarray
(dtypefloat
)Scores of each cell.
Examples
See this notebook.