scanpy.pp.highly_variable_genes#
- scanpy.pp.highly_variable_genes(adata, *, layer=None, n_top_genes=None, min_disp=0.5, max_disp=inf, min_mean=0.0125, max_mean=3, span=0.3, n_bins=20, flavor='seurat', subset=False, inplace=True, batch_key=None, check_values=True)[source]#
Annotate highly variable genes [Satija et al., 2015, Stuart et al., 2019, Zheng et al., 2017].
Expects logarithmized data, except when
flavor='seurat_v3'
/'seurat_v3_paper'
, in which count data is expected.Depending on
flavor
, this reproduces the R-implementations of Seurat [Satija et al., 2015], Cell Ranger [Zheng et al., 2017], and Seurat v3 [Stuart et al., 2019].'seurat_v3'
/'seurat_v3_paper'
requiresscikit-misc
package. If you plan to use this flavor, consider installingscanpy
with this optional dependency:scanpy[skmisc]
.For the dispersion-based methods (
flavor='seurat'
Satija et al. [2015] andflavor='cell_ranger'
Zheng et al. [2017]), the normalized dispersion is obtained by scaling with the mean and standard deviation of the dispersions for genes falling into a given bin for mean expression of genes. This means that for each bin of mean expression, highly variable genes are selected.For
flavor='seurat_v3'
/'seurat_v3_paper'
[Stuart et al., 2019], a normalized variance for each gene is computed. First, the data are standardized (i.e., z-score normalization per feature) with a regularized standard deviation. Next, the normalized variance is computed as the variance of each gene after the transformation. Genes are ranked by the normalized variance. Only ifbatch_key
is notNone
, the two flavors differ: Forflavor='seurat_v3'
, genes are first sorted by the median (across batches) rank, with ties broken by the number of batches a gene is a HVG. Forflavor='seurat_v3_paper'
, genes are first sorted by the number of batches a gene is a HVG, with ties broken by the median (across batches) rank.The following may help when comparing to Seurat’s naming: If
batch_key=None
andflavor='seurat'
, this mimics Seurat’sFindVariableFeatures(…, method='mean.var.plot')
. Ifbatch_key=None
andflavor='seurat_v3'
/flavor='seurat_v3_paper'
, this mimics Seurat’sFindVariableFeatures(..., method='vst')
. Ifbatch_key
is notNone
andflavor='seurat_v3_paper'
, this mimics Seurat’sSelectIntegrationFeatures
.See also
scanpy.experimental.pp._highly_variable_genes
for additional flavors (e.g. Pearson residuals).- Parameters:
- adata
AnnData
The annotated data matrix of shape
n_obs
×n_vars
. Rows correspond to cells and columns to genes.- layer
str
|None
(default:None
) If provided, use
adata.layers[layer]
for expression values instead ofadata.X
.- n_top_genes
int
|None
(default:None
) Number of highly-variable genes to keep. Mandatory if
flavor='seurat_v3'
.- min_mean
float
(default:0.0125
) If
n_top_genes
unequalsNone
, this and all other cutoffs for the means and the normalized dispersions are ignored. Ignored ifflavor='seurat_v3'
.- max_mean
float
(default:3
) If
n_top_genes
unequalsNone
, this and all other cutoffs for the means and the normalized dispersions are ignored. Ignored ifflavor='seurat_v3'
.- min_disp
float
(default:0.5
) If
n_top_genes
unequalsNone
, this and all other cutoffs for the means and the normalized dispersions are ignored. Ignored ifflavor='seurat_v3'
.- max_disp
float
(default:inf
) If
n_top_genes
unequalsNone
, this and all other cutoffs for the means and the normalized dispersions are ignored. Ignored ifflavor='seurat_v3'
.- span
float
(default:0.3
) The fraction of the data (cells) used when estimating the variance in the loess model fit if
flavor='seurat_v3'
.- n_bins
int
(default:20
) Number of bins for binning the mean gene expression. Normalization is done with respect to each bin. If just a single gene falls into a bin, the normalized dispersion is artificially set to 1. You’ll be informed about this if you set
settings.verbosity = 4
.- flavor
Literal
['seurat'
,'cell_ranger'
,'seurat_v3'
,'seurat_v3_paper'
] (default:'seurat'
) Choose the flavor for identifying highly variable genes. For the dispersion based methods in their default workflows, Seurat passes the cutoffs whereas Cell Ranger passes
n_top_genes
.- subset
bool
(default:False
) Inplace subset to highly-variable genes if
True
otherwise merely indicate highly variable genes.- inplace
bool
(default:True
) Whether to place calculated metrics in
.var
or return them.- batch_key
str
|None
(default:None
) If specified, highly-variable genes are selected within each batch separately and merged. This simple process avoids the selection of batch-specific genes and acts as a lightweight batch correction method. For all flavors, except
seurat_v3
, genes are first sorted by how many batches they are a HVG. For dispersion-based flavors ties are broken by normalized dispersion. Forflavor = 'seurat_v3_paper'
, ties are broken by the median (across batches) rank based on within-batch normalized variance.- check_values
bool
(default:True
) Check if counts in selected layer are integers. A Warning is returned if set to True. Only used if
flavor='seurat_v3'
/'seurat_v3_paper'
.
- adata
- Return type:
- Returns:
Returns a
pandas.DataFrame
with calculated metrics ifinplace=False
, else returns anAnnData
object where it sets the following field:adata.var['highly_variable']
pandas.Series
(dtypebool
)boolean indicator of highly-variable genes
adata.var['means']
pandas.Series
(dtypefloat
)means per gene
adata.var['dispersions']
pandas.Series
(dtypefloat
)For dispersion-based flavors, dispersions per gene
adata.var['dispersions_norm']
pandas.Series
(dtypefloat
)For dispersion-based flavors, normalized dispersions per gene
adata.var['variances']
pandas.Series
(dtypefloat
)For
flavor='seurat_v3'
/'seurat_v3_paper'
, variance per geneadata.var['variances_norm']
/'seurat_v3_paper'
pandas.Series
(dtypefloat
)For
flavor='seurat_v3'
/'seurat_v3_paper'
, normalized variance per gene, averaged in the case of multiple batchesadata.var['highly_variable_rank']
pandas.Series
(dtypefloat
)For
flavor='seurat_v3'
/'seurat_v3_paper'
, rank of the gene according to normalized variance, in case of multiple batches description aboveadata.var['highly_variable_nbatches']
pandas.Series
(dtypeint
)If
batch_key
is given, this denotes in how many batches genes are detected as HVGadata.var['highly_variable_intersection']
pandas.Series
(dtypebool
)If
batch_key
is given, this denotes the genes that are highly variable in all batches
Notes
This function replaces
filter_genes_dispersion()
.