Amid & Warmuth (2019), TriMap: Large-scale Dimensionality Reduction Using Triplets, arXiv.


Amir et al. (2013), viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia, Nature Biotechnology.


Angerer et al. (2016), destiny – diffusion maps for large-scale single-cell data in R, Bioinformatics.


Bernstein et al. (2020), Solo: Doublet Identification in Single-Cell RNA-Seq via Semi-Supervised Deep Learning, Cell Systems.


Blondel et al. (2008), Fast unfolding of communities in large networks, J. Stat. Mech..


ForceAtlas2 for Python and NetworkX, GitHub.


Coifman et al. (2005), Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps, PNAS.


Csardi et al. (2006), The igraph software package for complex network research, InterJournal Complex Systems.


Eraslan and Simon et al. (2018), Single cell RNA-seq denoising using a deep count autoencoder, bioRxiv.


PyPairs, GitHub.


Fruchterman & Reingold (1991), Graph drawing by force-directed placement, Software: Practice & Experience.


Gardner et al., (2000) Construction of a genetic toggle switch in Escherichia coli, Nature.


Haghverdi et al. (2015), Diffusion maps for high-dimensional single-cell analysis of differentiation data, Bioinformatics.


Haghverdi et al. (2016), Diffusion pseudotime robustly reconstructs branching cellular lineages, Nature Methods.


Haghverdi et al. (2018), Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors, Nature Biotechnology.


Hie et al. (2019), Efficient integration of heterogeneous single-cell transcriptomes using Scanorama, Nature Biotechnology.


Islam et al. (2011), Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq, Genome Research.


Jacomy et al. (2014), ForceAtlas2, a Continuous Graph Layout Algorithm for Handy Network Visualization Designed for the Gephi Software PLOS One.


Johnson, Li & Rabinovic (2007), Adjusting batch effects in microarray expression data using empirical Bayes methods, Biostatistics.


Kang et al. (2018), Python Implementation of MNN correct, GitHub.


Korunsky et al. (2019), Fast, sensitive and accurate integration of single-cell data with Harmony, Nature Methods <> __.


Krumsiek et al. (2011), Hierarchical Differentiation of Myeloid Progenitors Is Encoded in the Transcription Factor Network, PLoS ONE.


Lambiotte et al. (2009) Laplacian Dynamics and Multiscale Modular Structure in Networks arXiv.


Lause et al. (2021) Analytic Pearson residuals for normalization of single-cell RNA-seq UMI data, Genome Biology.


Leek et al. (2012), sva: Surrogate Variable Analysis. R package Bioconductor.


Levine et al. (2015), Data-Driven Phenotypic Dissection of AML Reveals Progenitor–like Cells that Correlate with Prognosis, Cell.


Maaten & Hinton (2008), Visualizing data using t-SNE, JMLR.


McCarthy et al. (2017), scater: Single-cell analysis toolkit for gene expression data in R, Bioinformatics.


Moon et al. (2019), PHATE: A Dimensionality Reduction Method for Visualizing Trajectory Structures in High-Dimensional Biological Data, Nature Biotechnology.


Satija et al. (2015), Spatial reconstruction of single-cell gene expression data, Nature Biotechnology.


La Manno et al. (2018), RNA velocity of single cells, Nature.


McInnes & Healy (2018), UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction, arXiv.


Moignard et al. (2015), Decoding the regulatory network of early blood development from single-cell gene expression measurements, Nature Biotechnology.


Ntranos et al. (2018), Identification of transcriptional signatures for cell types from single-cell RNA-Seq, bioRxiv.


Paul et al. (2015), Transcriptional Heterogeneity and Lineage Commitment in Myeloid Progenitors, Cell.


Pedersen (2012), Python implementation of ComBat GitHub.


Pedregosa et al. (2011), Scikit-learn: Machine Learning in Python, JMLR.


Polanski et al. (2019), BBKNN: fast batch alignment of single cell transcriptomes Bioinformatics.


Plass (2018), Cell type atlas and lineage tree of a whole complex animal by single-cell transcriptomics Science.


Scialdone et al. (2015), Computational assignment of cell-cycle stage from single-cell transcriptome data Methods.


Setty et al. (2016), Wishbone identifies bifurcating developmental trajectories from single-cell data Nature Biotechnology.


Setty et al. (2018), Palantir characterizes cell fate continuities in human hematopoiesis Nature Biotechnology.


Stuart et al. (2019), Comprehensive integration of single-cell data Cell.


Nowotschin et al. (2018), The emergent landscape of the mouse gut endoderm at single-cell resolution Nature.


(2017), Louvain, GitHub.


Tarashansky (2019), Self-assembling manifolds in single-cell RNA sequencing data, Elife.


Traag et al. (2018), From Louvain to Leiden: guaranteeing well-connected communities arXiv.


Ulyanov (2016), Multicore t-SNE, GitHub.


Van Dijk D et al. (2018), Recovering Gene Interactions from Single-Cell Data Using Data Diffusion, Cell.


Weinreb et al. (2016), SPRING: a kinetic interface for visualizing high dimensional single-cell expression data, bioRxiv.


Wittmann et al. (2009), Transforming Boolean models to continuous models: methodology and application to T-cell receptor signaling, BMC Systems Biology.


Waskom et al. (2017), Seaborn, Zenodo.


Wolf et al. (2018), Scanpy: large-scale single-cell gene expression data analysis, Genome Biology.


Wolf et al. (2019), PAGA: Graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome Biology, bioRxiv.


Wolock et al. (2019), BBKNN: fast batch alignment of single cell transcriptomes Cell Systems.


Zheng et al. (2017), Massively parallel digital transcriptional profiling of single cells, Nature Communications.


Zunder et al. (2015), A continuous molecular roadmap to iPSC reprogramming through progression analysis of single-cell mass cytometry, Cell Stem Cell.


Malte Luecken, Daniel Burkhardt, Robrecht Cannoodt, Christopher Lance, Aditi Agrawal, Hananeh Aliee, Ann Chen, Louise Deconinck, Angela Detweiler, Alejandro Granados, Shelly Huynh, Laura Isacco, Yang Kim, Dominik Klein, BONY DE KUMAR, Sunil Kuppasani, Heiko Lickert, Aaron McGeever, Joaquin Melgarejo, Honey Mekonen, Maurizio Morri, Michaela Müller, Norma Neff, Sheryl Paul, Bastian Rieck, Kaylie Schneider, Scott Steelman, Michael Sterr, Daniel Treacy, Alexander Tong, Alexandra-Chloe Villani, Guilin Wang, Jia Yan, Ce Zhang, Angela Pisco, Smita Krishnaswamy, Fabian Theis, and Jonathan M Bloom. A sandbox for prediction and integration of dna, rna, and proteins in single cells. In J. Vanschoren and S. Yeung, editors, Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks, volume 1. Curran, 2021. URL:


Davis J McCarthy, Kieran R Campbell, Aaron T L Lun, and Quin F Wills. Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in r. Bioinformatics, 33(8):1179–1186, January 2017. URL:, doi:10.1093/bioinformatics/btw777.


Rahul Satija, Jeffrey A Farrell, David Gennert, Alexander F Schier, and Aviv Regev. Spatial reconstruction of single-cell gene expression data. Nature Biotechnology, 33(5):495–502, April 2015. URL:, doi:10.1038/nbt.3192.


Tim Stuart, Andrew Butler, Paul Hoffman, Christoph Hafemeister, Efthymia Papalexi, William M Mauck, Yuhan Hao, Marlon Stoeckius, Peter Smibert, and Rahul Satija. Comprehensive integration of single-cell data. Cell, 177(7):1888–1902, 2019.


Vincent A Traag, Ludo Waltman, and Nees Jan Van Eck. From louvain to leiden: guaranteeing well-connected communities. Scientific reports, 9(1):5233, 2019.


Samuel L. Wolock, Romain Lopez, and Allon M. Klein. Scrublet: computational identification of cell doublets in single-cell transcriptomic data. Cell Systems, 8(4):281–291.e9, April 2019. URL:, doi:10.1016/j.cels.2018.11.005.


Grace X. Y. Zheng, Jessica M. Terry, Phillip Belgrader, Paul Ryvkin, Zachary W. Bent, Ryan Wilson, Solongo B. Ziraldo, Tobias D. Wheeler, Geoff P. McDermott, Junjie Zhu, Mark T. Gregory, Joe Shuga, Luz Montesclaros, Jason G. Underwood, Donald A. Masquelier, Stefanie Y. Nishimura, Michael Schnall-Levin, Paul W. Wyatt, Christopher M. Hindson, Rajiv Bharadwaj, Alexander Wong, Kevin D. Ness, Lan W. Beppu, H. Joachim Deeg, Christopher McFarland, Keith R. Loeb, William J. Valente, Nolan G. Ericson, Emily A. Stevens, Jerald P. Radich, Tarjei S. Mikkelsen, Benjamin J. Hindson, and Jason H. Bielas. Massively parallel digital transcriptional profiling of single cells. Nature Communications, January 2017. URL:, doi:10.1038/ncomms14049.