scanpy.tl.sim#
- scanpy.tl.sim(model, *, params_file=True, tmax=None, branching=None, nrRealizations=None, noiseObs=None, noiseDyn=None, step=None, seed=None, writedir=None)[source]#
Simulate dynamic gene expression data [Wittmann et al., 2009] [Wolf et al., 2018].
Sample from a stochastic differential equation model built from literature-curated boolean gene regulatory networks, as suggested by Wittmann et al. [2009]. The Scanpy implementation can be found in Wolf et al. [2018].
- Parameters:
- model
Literal
['krumsiek11'
,'toggleswitch'
] Model file in ‘sim_models’ directory.
- params_file
bool
(default:True
) Read default params from file.
- tmax
int
|None
(default:None
) Number of time steps per realization of time series.
- branching
bool
|None
(default:None
) Only write realizations that contain new branches.
- nrRealizations
int
|None
(default:None
) Number of realizations.
- noiseObs
float
|None
(default:None
) Observatory/Measurement noise.
- noiseDyn
float
|None
(default:None
) Dynamic noise.
- step
int
|None
(default:None
) Interval for saving state of system.
- seed
int
|None
(default:None
) Seed for generation of random numbers.
- writedir
Path
|str
|None
(default:None
) Path to directory for writing output files.
- model
- Return type:
- Returns:
Annotated data matrix.
Examples
See this use case