scanpy.pl.spatial#
- scanpy.pl.spatial(adata, *, color=None, mask_obs=None, gene_symbols=None, use_raw=None, sort_order=True, edges=False, edges_width=0.1, edges_color='grey', neighbors_key=None, arrows=False, arrows_kwds=None, groups=None, components=None, dimensions=None, layer=None, projection='2d', scale_factor=None, color_map=None, cmap=None, palette=None, na_color=None, na_in_legend=True, size=1.0, frameon=None, legend_fontsize=None, legend_fontweight='bold', legend_loc='right margin', legend_fontoutline=None, colorbar_loc='right', vmax=None, vmin=None, vcenter=None, norm=None, add_outline=False, outline_width=(0.3, 0.05), outline_color=('black', 'white'), ncols=4, hspace=0.25, wspace=None, title=None, show=None, save=None, ax=None, return_fig=None, marker='.', basis='spatial', img=None, img_key=_empty, library_id=_empty, crop_coord=None, alpha_img=1.0, bw=False, spot_size=None, **kwargs)[source]#
Scatter plot in spatial coordinates.
Deprecated since version 1.11.0: Use
squidpy.pl.spatial_scatter()
instead.This function allows overlaying data on top of images. Use the parameter
img_key
to see the image in the background And the parameterlibrary_id
to select the image. By default,'hires'
and'lowres'
are attempted.Use
crop_coord
,alpha_img
, andbw
to control how it is displayed. Usesize
to scale the size of the Visium spots plotted on top.As this function is designed to for imaging data, there are two key assumptions about how coordinates are handled:
1. The origin (e.g
(0, 0)
) is at the top left – as is common convention with image data.2. Coordinates are in the pixel space of the source image, so an equal aspect ratio is assumed.
If your anndata object has a
"spatial"
entry in.uns
, theimg_key
andlibrary_id
parameters to find values forimg
,scale_factor
, andspot_size
arguments. Alternatively, these values be passed directly.- Parameters:
- adata
AnnData
Annotated data matrix.
- color
str
|Sequence
[str
] |None
(default:None
) Keys for annotations of observations/cells or variables/genes, e.g.,
'ann1'
or['ann1', 'ann2']
.- gene_symbols
str
|None
(default:None
) Column name in
.var
DataFrame that stores gene symbols. By defaultvar_names
refer to the index column of the.var
DataFrame. Setting this option allows alternative names to be used.- use_raw
bool
|None
(default:None
) Use
.raw
attribute ofadata
for coloring with gene expression. IfNone
, defaults toTrue
iflayer
isn’t provided andadata.raw
is present.- layer
str
|None
(default:None
) Name of the AnnData object layer that wants to be plotted. By default adata.raw.X is plotted. If
use_raw=False
is set, thenadata.X
is plotted. Iflayer
is set to a valid layer name, then the layer is plotted.layer
takes precedence overuse_raw
.- library_id
str
|None
|Empty
(default:_empty
) library_id for Visium data, e.g. key in
adata.uns["spatial"]
.- img_key
str
|None
|Empty
(default:_empty
) Key for image data, used to get
img
andscale_factor
from"images"
and"scalefactors"
entires for this library. To use spatial coordinates, but not plot an image, passimg_key=None
.- img
ndarray
|None
(default:None
) image data to plot, overrides
img_key
.- scale_factor
float
|None
(default:None
) Scaling factor used to map from coordinate space to pixel space. Found by default if
library_id
andimg_key
can be resolved. Otherwise defaults to1.
.- spot_size
float
|None
(default:None
) Diameter of spot (in coordinate space) for each point. Diameter in pixels of the spots will be
size * spot_size * scale_factor
. This argument is required if it cannot be resolved from library info.- crop_coord
tuple
[int
,int
,int
,int
] |None
(default:None
) Coordinates to use for cropping the image (left, right, top, bottom). These coordinates are expected to be in pixel space (same as
basis
) and will be transformed byscale_factor
. If not provided, image is automatically cropped to bounds ofbasis
, plus a border.- alpha_img
float
(default:1.0
) Alpha value for image.
- bw
bool
|None
(default:False
) Plot image data in gray scale.
- sort_order
bool
(default:True
) For continuous annotations used as color parameter, plot data points with higher values on top of others.
- groups
str
|Sequence
[str
] |None
(default:None
) Restrict to a few categories in categorical observation annotation. The default is not to restrict to any groups.
- dimensions
tuple
[int
,int
] |Sequence
[tuple
[int
,int
]] |None
(default:None
) 0-indexed dimensions of the embedding to plot as integers. E.g. [(0, 1), (1, 2)]. Unlike
components
, this argument is used in the same way ascolors
, e.g. is used to specify a single plot at a time. Will eventually replace the components argument.- components
str
|Sequence
[str
] |None
(default:None
) For instance,
['1,2', '2,3']
. To plot all available components usecomponents='all'
.- projection
Literal
['2d'
,'3d'
] (default:'2d'
) Projection of plot (default:
'2d'
).- legend_loc
Optional
[Literal
['none'
,'right margin'
,'on data'
,'on data export'
,'best'
,'upper right'
,'upper left'
,'lower left'
,'lower right'
,'right'
,'center left'
,'center right'
,'lower center'
,'upper center'
,'center'
]] (default:'right margin'
) Location of legend, either
'on data'
,'right margin'
,None
, or a valid keyword for theloc
parameter ofLegend
.- legend_fontsize
Union
[float
,Literal
['xx-small'
,'x-small'
,'small'
,'medium'
,'large'
,'x-large'
,'xx-large'
],None
] (default:None
) Numeric size in pt or string describing the size. See
set_fontsize()
.- legend_fontweight
Union
[int
,Literal
['light'
,'normal'
,'medium'
,'semibold'
,'bold'
,'heavy'
,'black'
]] (default:'bold'
) Legend font weight. A numeric value in range 0-1000 or a string. Defaults to
'bold'
iflegend_loc == 'on data'
, otherwise to'normal'
. Seeset_fontweight()
.- legend_fontoutline
int
|None
(default:None
) Line width of the legend font outline in pt. Draws a white outline using the path effect
withStroke
.- colorbar_loc
str
|None
(default:'right'
) Where to place the colorbar for continous variables. If
None
, no colorbar is added.- size
float
(default:1.0
) Point size. If
None
, is automatically computed as 120000 / n_cells. Can be a sequence containing the size for each cell. The order should be the same as in adata.obs.- color_map
Colormap
|str
|None
(default:None
) Color map to use for continous variables. Can be a name or a
Colormap
instance (e.g."magma
”,"viridis"
ormpl.cm.cividis
), seeget_cmap()
. IfNone
, the value ofmpl.rcParams["image.cmap"]
is used. The defaultcolor_map
can be set usingset_figure_params()
.- palette
str
|Sequence
[str
] |Cycler
|None
(default:None
) Colors to use for plotting categorical annotation groups. The palette can be a valid
ListedColormap
name ('Set2'
,'tab20'
, …), aCycler
object, a dict mapping categories to colors, or a sequence of colors. Colors must be valid to matplotlib. (seeis_color_like()
). IfNone
,mpl.rcParams["axes.prop_cycle"]
is used unless the categorical variable already has colors stored inadata.uns["{var}_colors"]
. If provided, values ofadata.uns["{var}_colors"]
will be set.- na_color
str
|tuple
[float
,...
] |None
(default:None
) Color to use for null or masked values. Can be anything matplotlib accepts as a color. Used for all points if
color=None
.- na_in_legend
bool
(default:True
) If there are missing values, whether they get an entry in the legend. Currently only implemented for categorical legends.
- frameon
bool
|None
(default:None
) Draw a frame around the scatter plot. Defaults to value set in
set_figure_params()
, defaults toTrue
.- title
str
|Sequence
[str
] |None
(default:None
) Provide title for panels either as string or list of strings, e.g.
['title1', 'title2', ...]
.- vmin
str
|float
|Callable
[[Sequence
[float
]],float
] |Sequence
[str
|float
|Callable
[[Sequence
[float
]],float
]] |None
(default:None
) The value representing the lower limit of the color scale. Values smaller than vmin are plotted with the same color as vmin. vmin can be a number, a string, a function or
None
. If vmin is a string and has the formatpN
, this is interpreted as a vmin=percentile(N). For example vmin=’p1.5’ is interpreted as the 1.5 percentile. If vmin is function, then vmin is interpreted as the return value of the function over the list of values to plot. For example to set vmin tp the mean of the values to plot,def my_vmin(values): return np.mean(values)
and then setvmin=my_vmin
. If vmin is None (default) an automatic minimum value is used as defined by matplotlibscatter
function. When making multiple plots, vmin can be a list of values, one for each plot. For examplevmin=[0.1, 'p1', None, my_vmin]
- vmax
str
|float
|Callable
[[Sequence
[float
]],float
] |Sequence
[str
|float
|Callable
[[Sequence
[float
]],float
]] |None
(default:None
) The value representing the upper limit of the color scale. The format is the same as for
vmin
.- vcenter
str
|float
|Callable
[[Sequence
[float
]],float
] |Sequence
[str
|float
|Callable
[[Sequence
[float
]],float
]] |None
(default:None
) The value representing the center of the color scale. Useful for diverging colormaps. The format is the same as for
vmin
. Example: sc.pl.umap(adata, color=’TREM2’, vcenter=’p50’, cmap=’RdBu_r’)- add_outline
bool
|None
(default:False
) If set to True, this will add a thin border around groups of dots. In some situations this can enhance the aesthetics of the resulting image
- outline_color
tuple
[str
,str
] (default:('black', 'white')
) Tuple with two valid color names used to adjust the add_outline. The first color is the border color (default: black), while the second color is a gap color between the border color and the scatter dot (default: white).
- outline_width
tuple
[float
,float
] (default:(0.3, 0.05)
) Tuple with two width numbers used to adjust the outline. The first value is the width of the border color as a fraction of the scatter dot size (default: 0.3). The second value is width of the gap color (default: 0.05).
- ncols
int
(default:4
) Number of panels per row.
- wspace
float
|None
(default:None
) Adjust the width of the space between multiple panels.
- hspace
float
(default:0.25
) Adjust the height of the space between multiple panels.
- return_fig
bool
|None
(default:None
) Return the matplotlib figure.
- kwargs
Arguments to pass to
matplotlib.pyplot.scatter()
, for instance: the maximum and minimum values (e.g.vmin=-2, vmax=5
).- show
bool
|None
(default:None
) Show the plot, do not return axis.
- save
bool
|str
|None
(default:None
) If
True
or astr
, save the figure. A string is appended to the default filename. Infer the filetype if ending on {'.pdf'
,'.png'
,'.svg'
}.- ax
Axes
|None
(default:None
) A matplotlib axes object. Only works if plotting a single component.
- adata
- Return type:
- Returns:
If
show==False
aAxes
or a list of it.
Examples
This function behaves very similarly to other embedding plots like
umap()
>>> import scanpy as sc >>> adata = sc.datasets.visium_sge("Targeted_Visium_Human_Glioblastoma_Pan_Cancer") >>> sc.pp.calculate_qc_metrics(adata, inplace=True) >>> sc.pl.spatial(adata, color="log1p_n_genes_by_counts")
See also
scanpy.datasets.visium_sge()
Example visium data.