scanpy.tl.tsne#
- scanpy.tl.tsne(adata, n_pcs=None, *, use_rep=None, perplexity=30, metric='euclidean', early_exaggeration=12, learning_rate=1000, random_state=0, use_fast_tsne=False, n_jobs=None, key_added=None, copy=False)[source]#
t-SNE [Amir et al., 2013, Pedregosa et al., 2011, van der Maaten and Hinton, 2008].
t-distributed stochastic neighborhood embedding (tSNE, van der Maaten and Hinton [2008]) was proposed for visualizating single-cell data by Amir et al. [2013]. Here, by default, we use the implementation of scikit-learn [Pedregosa et al., 2011]. You can achieve a huge speedup and better convergence if you install Multicore-tSNE by Ulyanov [2016], which will be automatically detected by Scanpy.
- Parameters:
- adata
AnnData
Annotated data matrix.
- n_pcs
int
|None
(default:None
) Use this many PCs. If
n_pcs==0
use.X
ifuse_rep is None
.- use_rep
str
|None
(default:None
) Use the indicated representation.
'X'
or any key for.obsm
is valid. IfNone
, the representation is chosen automatically: For.n_vars
<N_PCS
(default: 50),.X
is used, otherwise ‘X_pca’ is used. If ‘X_pca’ is not present, it’s computed with default parameters orn_pcs
if present.- perplexity
float
(default:30
) The perplexity is related to the number of nearest neighbors that is used in other manifold learning algorithms. Larger datasets usually require a larger perplexity. Consider selecting a value between 5 and 50. The choice is not extremely critical since t-SNE is quite insensitive to this parameter.
- metric
str
(default:'euclidean'
) Distance metric calculate neighbors on.
- early_exaggeration
float
(default:12
) Controls how tight natural clusters in the original space are in the embedded space and how much space will be between them. For larger values, the space between natural clusters will be larger in the embedded space. Again, the choice of this parameter is not very critical. If the cost function increases during initial optimization, the early exaggeration factor or the learning rate might be too high.
- learning_rate
float
(default:1000
) Note that the R-package “Rtsne” uses a default of 200. The learning rate can be a critical parameter. It should be between 100 and 1000. If the cost function increases during initial optimization, the early exaggeration factor or the learning rate might be too high. If the cost function gets stuck in a bad local minimum increasing the learning rate helps sometimes.
- random_state
int
|RandomState
|None
(default:0
) Change this to use different intial states for the optimization. If
None
, the initial state is not reproducible.- n_jobs
int
|None
(default:None
) Number of jobs for parallel computation.
None
means usingscanpy._settings.ScanpyConfig.n_jobs
.- key_added
str
|None
(default:None
) If not specified, the embedding is stored as
obsm
['X_tsne']
and the the parameters inuns
['tsne']
. If specified, the embedding is stored asobsm
[key_added]
and the the parameters inuns
[key_added]
.- copy
bool
(default:False
) Return a copy instead of writing to
adata
.
- adata
- Return type:
- Returns:
Returns
None
ifcopy=False
, else returns anAnnData
object. Sets the following fields:adata.obsm['X_tsne' | key_added]
numpy.ndarray
(dtypefloat
)tSNE coordinates of data.
adata.uns['tsne' | key_added]
dict
tSNE parameters.