scanpy.pl.heatmap

scanpy.pl.heatmap(adata, var_names, groupby=None, use_raw=None, log=False, num_categories=7, dendrogram=False, gene_symbols=None, var_group_positions=None, var_group_labels=None, var_group_rotation=None, layer=None, standard_scale=None, swap_axes=False, show_gene_labels=None, show=None, save=None, figsize=None, **kwds)
../_images/scanpy.pl.heatmap.png

Heatmap of the expression values of genes.

If groupby is given, the heatmap is ordered by the respective group. For example, a list of marker genes can be plotted, ordered by clustering. If the groupby observation annotation is not categorical the observation annotation is turned into a categorical by binning the data into the number specified in num_categories.

Parameters
adata : AnnDataAnnData

Annotated data matrix.

var_names : str, Sequence[str], MappingUnion[str, Sequence[str], Mapping[str, Union[str, Sequence[str]]]]

var_names should be a valid subset of adata.var_names. If var_names is a mapping, then the key is used as label to group the values (see var_group_labels). The mapping values should be sequences of valid adata.var_names. In this case either coloring or ‘brackets’ are used for the grouping of var names depending on the plot. When var_names is a mapping, then the var_group_labels and var_group_positions are set.

groupby : str, NoneOptional[str] (default: None)

The key of the observation grouping to consider.

use_raw : bool, NoneOptional[bool] (default: None)

Use raw attribute of adata if present.

log : boolbool (default: False)

Plot on logarithmic axis.

num_categories : intint (default: 7)

Only used if groupby observation is not categorical. This value determines the number of groups into which the groupby observation should be subdivided.

figsize : Tuple[float, float], NoneOptional[Tuple[float, float]] (default: None)

Figure size when multi_panel=True. Otherwise the rcParam['figure.figsize] value is used. Format is (width, height)

dendrogram : bool, strUnion[bool, str] (default: False)

If True or a valid dendrogram key, a dendrogram based on the hierarchical clustering between the groupby categories is added. The dendrogram information is computed using scanpy.tl.dendrogram(). If tl.dendrogram has not been called previously the function is called with default parameters.

gene_symbols : str, NoneOptional[str] (default: None)

Column name in .var DataFrame that stores gene symbols. By default var_names refer to the index column of the .var DataFrame. Setting this option allows alternative names to be used.

var_group_positions : Sequence[Tuple[int, int]], NoneOptional[Sequence[Tuple[int, int]]] (default: None)

Use this parameter to highlight groups of var_names. This will draw a ‘bracket’ or a color block between the given start and end positions. If the parameter var_group_labels is set, the corresponding labels are added on top/left. E.g. var_group_positions=[(4,10)] will add a bracket between the fourth var_name and the tenth var_name. By giving more positions, more brackets/color blocks are drawn.

var_group_labels : Sequence[str], NoneOptional[Sequence[str]] (default: None)

Labels for each of the var_group_positions that want to be highlighted.

var_group_rotation : float, NoneOptional[float] (default: None)

Label rotation degrees. By default, labels larger than 4 characters are rotated 90 degrees.

layer : str, NoneOptional[str] (default: None)

Name of the AnnData object layer that wants to be plotted. By default adata.raw.X is plotted. If use_raw=False is set, then adata.X is plotted. If layer is set to a valid layer name, then the layer is plotted. layer takes precedence over use_raw.

standard_scale : {‘var’, ‘obs’}, NoneOptional[Literal[‘var’, ‘obs’]] (default: None)

Whether or not to standardize that dimension between 0 and 1, meaning for each variable or observation, subtract the minimum and divide each by its maximum.

swap_axes : boolbool (default: False)

By default, the x axis contains var_names (e.g. genes) and the y axis the groupby categories (if any). By setting swap_axes then x are the groupby categories and y the var_names.

show_gene_labels : bool, NoneOptional[bool] (default: None)

By default gene labels are shown when there are 50 or less genes. Otherwise the labels are removed.

show : bool, NoneOptional[bool] (default: None)

Show the plot, do not return axis.

save : str, bool, NoneUnion[str, bool, None] (default: None)

If True or a str, save the figure. A string is appended to the default filename. Infer the filetype if ending on {'.pdf', '.png', '.svg'}.

ax

A matplotlib axes object. Only works if plotting a single component.

**kwds

Are passed to matplotlib.pyplot.imshow().

Returns

List of Axes

Examples

>>> import scanpy as sc
>>> adata = sc.datasets.pbmc68k_reduced()
>>> markers = ['C1QA', 'PSAP', 'CD79A', 'CD79B', 'CST3', 'LYZ']
>>> sc.pl.heatmap(adata, markers, groupby='bulk_labels', dendrogram=True, swap_axes=True)

Using var_names as dict:

>>> markers = {'T-cell': 'CD3D', 'B-cell': 'CD79A', 'myeloid': 'CST3'}
>>> sc.pl.heatmap(adata, markers, groupby='bulk_labels', dendrogram=True)

See also

rank_genes_groups_heatmap()

to plot marker genes identified using the rank_genes_groups() function.