scanpy.pp.normalize_total#
- scanpy.pp.normalize_total(adata, *, target_sum=None, exclude_highly_expressed=False, max_fraction=0.05, key_added=None, layer=None, inplace=True, copy=False)[source]#
Normalize counts per cell.
Normalize each cell by total counts over all genes, so that every cell has the same total count after normalization. If choosing
target_sum=1e6, this is CPM normalization.If
exclude_highly_expressed=True, very highly expressed genes are excluded from the computation of the normalization factor (size factor) for each cell. This is meaningful as these can strongly influence the resulting normalized values for all other genes [Weinreb et al., 2017].Similar functions are used, for example, by Seurat [Satija et al., 2015], Cell Ranger [Zheng et al., 2017] or SPRING [Weinreb et al., 2017].
Note
When used with a
Arrayinadata.X, this function will have to call functions that trigger.compute()on theArrayifexclude_highly_expressedisTrue,layer_normis notNone, or ifkey_addedis notNone.- Parameters:
- adata
AnnData The annotated data matrix of shape
n_obs×n_vars. Rows correspond to cells and columns to genes.- target_sum
float|None(default:None) If
None, after normalization, each observation (cell) has a total count equal to the median of total counts for observations (cells) before normalization.- exclude_highly_expressed
bool(default:False) Exclude (very) highly expressed genes for the computation of the normalization factor (size factor) for each cell. A gene is considered highly expressed, if it has more than
max_fractionof the total counts in at least one cell. The not-excluded genes will sum up totarget_sum. Providing this argument whenadata.Xis aArraywill incur blocking.compute()calls on the array.- max_fraction
float(default:0.05) If
exclude_highly_expressed=True, consider cells as highly expressed that have more counts thanmax_fractionof the original total counts in at least one cell.- key_added
str|None(default:None) Name of the field in
adata.obswhere the normalization factor is stored.- layer
str|None(default:None) Layer to normalize instead of
X. IfNone,Xis normalized.- inplace
bool(default:True) Whether to update
adataor return dictionary with normalized copies ofadata.Xandadata.layers.- copy
bool(default:False) Whether to modify copied input object. Not compatible with inplace=False.
- adata
- Return type:
- Returns:
Returns dictionary with normalized copies of
adata.Xandadata.layersor updatesadatawith normalized version of the originaladata.Xandadata.layers, depending oninplace.
Example
>>> import sys >>> from anndata import AnnData >>> import scanpy as sc >>> sc.settings.verbosity = "info" >>> sc.settings.logfile = sys.stdout # for doctests >>> np.set_printoptions(precision=2) >>> adata = AnnData( ... np.array( ... [ ... [3, 3, 3, 6, 6], ... [1, 1, 1, 2, 2], ... [1, 22, 1, 2, 2], ... ], ... dtype="float32", ... ) ... ) >>> adata.X array([[ 3., 3., 3., 6., 6.], [ 1., 1., 1., 2., 2.], [ 1., 22., 1., 2., 2.]], dtype=float32) >>> X_norm = sc.pp.normalize_total(adata, target_sum=1, inplace=False)["X"] normalizing counts per cell finished (0:00:00) >>> X_norm array([[0.14, 0.14, 0.14, 0.29, 0.29], [0.14, 0.14, 0.14, 0.29, 0.29], [0.04, 0.79, 0.04, 0.07, 0.07]], dtype=float32) >>> X_norm = sc.pp.normalize_total( ... adata, ... target_sum=1, ... exclude_highly_expressed=True, ... max_fraction=0.2, ... inplace=False, ... )["X"] normalizing counts per cell The following highly-expressed genes are not considered during normalization factor computation: ['1', '3', '4'] finished (0:00:00) >>> X_norm array([[ 0.5, 0.5, 0.5, 1. , 1. ], [ 0.5, 0.5, 0.5, 1. , 1. ], [ 0.5, 11. , 0.5, 1. , 1. ]], dtype=float32)