scanpy.external.pl.wishbone_marker_trajectory#
- scanpy.external.pl.wishbone_marker_trajectory(adata, markers, *, no_bins=150, smoothing_factor=1, min_delta=0.1, show_variance=False, figsize=None, return_fig=False, show=True, save=None, ax=None)[source]#
Plot marker trends along trajectory, and return trajectory branches for further analysis and visualization (heatmap, etc..)
- Parameters:
- adata
AnnData
Annotated data matrix.
- markers
Collection
[str
] Iterable of markers/genes to be plotted.
- show_variance
bool
(default:False
) Logical indicating if the trends should be accompanied with variance.
- no_bins
int
(default:150
) Number of bins for calculating marker density.
- smoothing_factor
int
(default:1
) Parameter controlling the degree of smoothing.
- min_delta
float
(default:0.1
) Minimum difference in marker expression after normalization to show separate trends for the two branches.
- figsize
tuple
[float
,float
] |None
(default:None
) width, height
- return_fig
bool
(default:False
) Return the matplotlib figure.
- show
bool
(default:True
) Show the plot, do not return axis.
- save
str
|bool
|None
(default:None
) If
True
or astr
, save the figure. A string is appended to the default filename. Infer the filetype if ending on {'.pdf'
,'.png'
,'.svg'
}.- ax
Axes
|None
(default:None
) A matplotlib axes object. Only works if plotting a single component.
- adata
- Returns:
Updates
adata
with the following fields:trunk_wishbone
pandas.DataFrame
(adata.uns
)Computed values before branching
branch1_wishbone
pandas.DataFrame
(adata.uns
)Computed values for the first branch
branch2_wishbone
pandas.DataFrame
(adata.uns
)Computed values for the second branch.