scanpy.pl.pca_overview#
- scanpy.pl.pca_overview(adata, **params)[source]#
- Plot PCA results. - The parameters are the ones of the scatter plot. Call pca_ranking separately if you want to change the default settings. - Parameters:
- adata AnnData
- Annotated data matrix. 
- color
- Keys for observation/cell annotation either as list - ["ann1", "ann2"]or string- "ann1,ann2,...".
- use_raw
- Use - rawattribute of- adataif present.
- sort_order
- For continuous annotations used as color parameter, plot data points with higher values on top of others. 
- groups
- Restrict to a few categories in categorical observation annotation. The default is not to restrict to any groups. 
- dimensions
- 0-indexed dimensions of the embedding to plot as integers. E.g. [(0, 1), (1, 2)]. Unlike - components, this argument is used in the same way as- colors, e.g. is used to specify a single plot at a time. Will eventually replace the components argument.
- components
- For instance, - ['1,2', '2,3']. To plot all available components use- components='all'.
- projection
- Projection of plot (default: - '2d').
- legend_loc
- Location of legend, either - 'on data',- 'right margin',- None, or a valid keyword for the- locparameter of- Legend.
- legend_fontsize
- Numeric size in pt or string describing the size. See - set_fontsize().
- legend_fontweight
- Legend font weight. A numeric value in range 0-1000 or a string. Defaults to - 'bold'if- legend_loc == 'on data', otherwise to- 'normal'. See- set_fontweight().
- legend_fontoutline
- Line width of the legend font outline in pt. Draws a white outline using the path effect - withStroke.
- colorbar_loc
- Where to place the colorbar for continous variables. If - None, no colorbar is added.
- size
- Point size. If - None, is automatically computed as 120000 / n_cells. Can be a sequence containing the size for each cell. The order should be the same as in adata.obs.
- color_map
- Color map to use for continous variables. Can be a name or a - Colormapinstance (e.g.- "magma”,- "viridis"or- mpl.cm.cividis), see- get_cmap(). If- None, the value of- mpl.rcParams["image.cmap"]is used. The default- color_mapcan be set using- set_figure_params().
- palette
- Colors to use for plotting categorical annotation groups. The palette can be a valid - ListedColormapname (- 'Set2',- 'tab20', …), a- Cyclerobject, a dict mapping categories to colors, or a sequence of colors. Colors must be valid to matplotlib. (see- is_color_like()). If- None,- mpl.rcParams["axes.prop_cycle"]is used unless the categorical variable already has colors stored in- adata.uns["{var}_colors"]. If provided, values of- adata.uns["{var}_colors"]will be set.
- na_color
- Color to use for null or masked values. Can be anything matplotlib accepts as a color. Used for all points if - color=None.
- na_in_legend
- If there are missing values, whether they get an entry in the legend. Currently only implemented for categorical legends. 
- frameon
- Draw a frame around the scatter plot. Defaults to value set in - set_figure_params(), defaults to- True.
- title
- Provide title for panels either as string or list of strings, e.g. - ['title1', 'title2', ...].
- vmin
- The value representing the lower limit of the color scale. Values smaller than vmin are plotted with the same color as vmin. vmin can be a number, a string, a function or - None. If vmin is a string and has the format- pN, this is interpreted as a vmin=percentile(N). For example vmin=’p1.5’ is interpreted as the 1.5 percentile. If vmin is function, then vmin is interpreted as the return value of the function over the list of values to plot. For example to set vmin tp the mean of the values to plot,- def my_vmin(values): return np.mean(values)and then set- vmin=my_vmin. If vmin is None (default) an automatic minimum value is used as defined by matplotlib- scatterfunction. When making multiple plots, vmin can be a list of values, one for each plot. For example- vmin=[0.1, 'p1', None, my_vmin]
- vmax
- The value representing the upper limit of the color scale. The format is the same as for - vmin.
- vcenter
- The value representing the center of the color scale. Useful for diverging colormaps. The format is the same as for - vmin. Example:- sc.pl.umap(adata, color='TREM2', vcenter='p50', cmap='RdBu_r')
- add_outline
- If set to True, this will add a thin border around groups of dots. In some situations this can enhance the aesthetics of the resulting image 
- outline_color
- Tuple with two valid color names used to adjust the add_outline. The first color is the border color (default: black), while the second color is a gap color between the border color and the scatter dot (default: white). 
- outline_width
- Tuple with two width numbers used to adjust the outline. The first value is the width of the border color as a fraction of the scatter dot size (default: 0.3). The second value is width of the gap color (default: 0.05). 
- ncols
- Number of panels per row. 
- wspace
- Adjust the width of the space between multiple panels. 
- hspace
- Adjust the height of the space between multiple panels. 
- return_fig
- Return the matplotlib figure. 
- kwargs
- Arguments to pass to - matplotlib.pyplot.scatter(), for instance: the maximum and minimum values (e.g.- vmin=-2, vmax=5).
- show
- Show the plot, do not return axis. 
- save
- If - Trueor a- str, save the figure. A string is appended to the default filename. Infer the filetype if ending on {- '.pdf',- '.png',- '.svg'}.
 
- adata 
 - Examples - import scanpy as sc adata = sc.datasets.pbmc3k_processed() sc.pl.pca_overview(adata, color="louvain")       - See also