scanpy.experimental.pp.normalize_pearson_residuals#
- scanpy.experimental.pp.normalize_pearson_residuals(adata, *, theta=100, clip=None, check_values=True, layer=None, inplace=True, copy=False)[source]#
Apply analytic Pearson residual normalization, based on Lause et al. [2021].
The residuals are based on a negative binomial offset model with overdispersion
thetashared across genes. By default, residuals are clipped tosqrt(n_obs)and overdispersiontheta=100is used.Expects raw count input.
- Parameters:
- adata
AnnData The annotated data matrix of shape
n_obs×n_vars. Rows correspond to cells and columns to genes.- theta
float(default:100) The negative binomial overdispersion parameter
thetafor Pearson residuals. Higher values correspond to less overdispersion (var = mean + mean^2/theta), andtheta=np.infcorresponds to a Poisson model.- clip
float|None(default:None) Determines if and how residuals are clipped:
If
None, residuals are clipped to the interval[-sqrt(n_obs), sqrt(n_obs)], wheren_obsis the number of cells in the dataset (default behavior).If any scalar
c, residuals are clipped to the interval[-c, c]. Setclip=np.inffor no clipping.
- check_values
bool(default:True) If
True, checks if counts in selected layer are integers as expected by this function, and return a warning if non-integers are found. Otherwise, proceed without checking. Setting this toFalsecan speed up code for large datasets.- layer
str|None(default:None) Layer to use as input instead of
X. IfNone,Xis used.- inplace
bool(default:True) If
True, updateadatawith results. Otherwise, return results. See below for details of what is returned.- copy
bool(default:False) If
True, the function runs on a copy of the input object and returns the modified copy. Otherwise, the input object is modified direcly. Not compatible withinplace=False.
- adata
- Return type:
- Returns:
If
inplace=True,adata.Xor the selected layer inadata.layersis updated with the normalized values.adata.unsis updated with the following fields. Ifinplace=False, the same fields are returned as dictionary with the normalized values inresults_dict['X']..uns['pearson_residuals_normalization']['theta']The used value of the overdisperion parameter theta.
.uns['pearson_residuals_normalization']['clip']The used value of the clipping parameter.
.uns['pearson_residuals_normalization']['computed_on']The name of the layer on which the residuals were computed.