scanpy.external.tl.cyclone#
- scanpy.external.tl.cyclone(adata, marker_pairs=None, *, iterations=1000, min_iter=100, min_pairs=50)[source]#
Assigns scores and predicted class to observations [Scialdone et al., 2015] [Fechtner, 2018].
Calculates scores for each observation and each phase and assigns prediction based on marker pairs indentified by
sandbag()
.This reproduces the approach of Scialdone et al. [2015] in the implementation of Fechtner [2018].
- Parameters:
- adata
AnnData
The annotated data matrix.
- marker_pairs
Mapping
[str
,Collection
[tuple
[str
,str
]]] |None
(default:None
) Mapping of categories to lists of marker pairs. See
sandbag()
output.- iterations
int
(default:1000
) An integer scalar specifying the number of iterations for random sampling to obtain a cycle score.
- min_iter
int
(default:100
) An integer scalar specifying the minimum number of iterations for score estimation.
- min_pairs
int
(default:50
) An integer scalar specifying the minimum number of pairs for score estimation.
- adata
- Return type:
- Returns:
A
DataFrame
with samples as index and categories as columns with scores for each category for each sample and a additional column with the name of the max scoring category for each sample.If
marker_pairs
contains only the cell cycle categories G1, S and G2M an additional columnpypairs_cc_prediction
will be added. Where category S is assigned to samples where G1 and G2M score are < 0.5.