scanpy.external.tl.cyclone#
- scanpy.external.tl.cyclone(adata, marker_pairs=None, *, iterations=1000, min_iter=100, min_pairs=50)[source]#
Assign scores and predicted class to observations [Scialdone et al., 2015] [Fechtner, 2018].
Calculates scores for each observation and each phase and assigns prediction based on marker pairs indentified by
sandbag().This reproduces the approach of Scialdone et al. [2015] in the implementation of Fechtner [2018].
- Parameters:
- adata
AnnData The annotated data matrix.
- marker_pairs
Mapping[str,Collection[tuple[str,str]]] |None(default:None) Mapping of categories to lists of marker pairs. See
sandbag()output.- iterations
int(default:1000) An integer scalar specifying the number of iterations for random sampling to obtain a cycle score.
- min_iter
int(default:100) An integer scalar specifying the minimum number of iterations for score estimation.
- min_pairs
int(default:50) An integer scalar specifying the minimum number of pairs for score estimation.
- adata
- Return type:
- Returns:
A
DataFramewith samples as index and categories as columns with scores for each category for each sample and a additional column with the name of the max scoring category for each sample.If
marker_pairscontains only the cell cycle categories G1, S and G2M an additional columnpypairs_cc_predictionwill be added. Where category S is assigned to samples where G1 and G2M score are < 0.5.