scanpy.tl.sim#
- scanpy.tl.sim(model, *, params_file=True, tmax=None, branching=None, nrRealizations=None, noiseObs=None, noiseDyn=None, step=None, seed=None, writedir=None)[source]#
 Simulate dynamic gene expression data [Wittmann et al., 2009] [Wolf et al., 2018].
Sample from a stochastic differential equation model built from literature-curated boolean gene regulatory networks, as suggested by Wittmann et al. [2009]. The Scanpy implementation can be found in Wolf et al. [2018].
- Parameters:
 - model 
Literal['krumsiek11','toggleswitch'] Model file in ‘sim_models’ directory.
- params_file 
bool(default:True) Read default params from file.
- tmax 
int|None(default:None) Number of time steps per realization of time series.
- branching 
bool|None(default:None) Only write realizations that contain new branches.
- nrRealizations 
int|None(default:None) Number of realizations.
- noiseObs 
float|None(default:None) Observatory/Measurement noise.
- noiseDyn 
float|None(default:None) Dynamic noise.
- step 
int|None(default:None) Interval for saving state of system.
- seed 
int|None(default:None) Seed for generation of random numbers.
- writedir 
Path|str|None(default:None) Path to directory for writing output files.
- model 
 - Return type:
 - Returns:
 Annotated data matrix.
Examples
See this use case