scanpy.external.pl.wishbone_marker_trajectory#
- scanpy.external.pl.wishbone_marker_trajectory(adata, markers, *, no_bins=150, smoothing_factor=1, min_delta=0.1, show_variance=False, figsize=None, return_fig=False, show=True, save=None, ax=None)[source]#
 Plot marker trends along trajectory, and return trajectory branches.
Intended for further analysis and visualization (heatmap, etc.).
- Parameters:
 - adata 
AnnData Annotated data matrix.
- markers 
Collection[str] Iterable of markers/genes to be plotted.
- show_variance 
bool(default:False) Logical indicating if the trends should be accompanied with variance.
- no_bins 
int(default:150) Number of bins for calculating marker density.
- smoothing_factor 
int(default:1) Parameter controlling the degree of smoothing.
- min_delta 
float(default:0.1) Minimum difference in marker expression after normalization to show separate trends for the two branches.
- figsize 
tuple[float,float] |None(default:None) width, height
- return_fig 
bool(default:False) Return the matplotlib figure.
- show 
bool(default:True) Show the plot, do not return axis.
- save 
str|bool|None(default:None) If
Trueor astr, save the figure. A string is appended to the default filename. Infer the filetype if ending on {'.pdf','.png','.svg'}.- ax 
Axes|None(default:None) A matplotlib axes object. Only works if plotting a single component.
- adata 
 - Returns:
 Updates
adatawith the following fields:trunk_wishbonepandas.DataFrame(adata.uns)Computed values before branching
branch1_wishbonepandas.DataFrame(adata.uns)Computed values for the first branch
branch2_wishbonepandas.DataFrame(adata.uns)Computed values for the second branch.