scanpy.external.pl.wishbone_marker_trajectory
- scanpy.external.pl.wishbone_marker_trajectory(adata, markers, no_bins=150, smoothing_factor=1, min_delta=0.1, show_variance=False, figsize=None, return_fig=False, show=True, save=None, ax=None)
- Plot marker trends along trajectory, and return trajectory branches for further analysis and visualization (heatmap, etc..) - Parameters
- adata : AnnDataAnnData
- Annotated data matrix. 
- markers : Collection[str]Collection[str]
- Iterable of markers/genes to be plotted. 
- show_variance : boolbool(default:False)
- Logical indicating if the trends should be accompanied with variance. 
- no_bins : intint(default:150)
- Number of bins for calculating marker density. 
- smoothing_factor : intint(default:1)
- Parameter controlling the degree of smoothing. 
- min_delta : floatfloat(default:0.1)
- Minimum difference in marker expression after normalization to show separate trends for the two branches. 
- figsize : Tuple[float,float] |NoneOptional[Tuple[float,float]] (default:None)
- width, height 
- return_fig : boolbool(default:False)
- Return the matplotlib figure. 
- show : boolbool(default:True)
- Show the plot, do not return axis. 
- save : str|bool|NoneUnion[str,bool,None] (default:None)
- If - Trueor a- str, save the figure. A string is appended to the default filename. Infer the filetype if ending on {- '.pdf',- '.png',- '.svg'}.
- ax : Axes|NoneOptional[Axes] (default:None)
- A matplotlib axes object. Only works if plotting a single component. 
 
- adata : 
- Returns
- Updates - adatawith the following fields:- trunk_wishbone- pandas.DataFrame(- adata.uns)
- Computed values before branching 
- branch1_wishbone- pandas.DataFrame(- adata.uns)
- Computed values for the first branch 
- branch2_wishbone- pandas.DataFrame(- adata.uns)
- Computed values for the second branch.