scanpy.pl.heatmap
- scanpy.pl.heatmap(adata, var_names, groupby, use_raw=None, log=False, num_categories=7, dendrogram=False, gene_symbols=None, var_group_positions=None, var_group_labels=None, var_group_rotation=None, layer=None, standard_scale=None, swap_axes=False, show_gene_labels=None, show=None, save=None, figsize=None, vmin=None, vmax=None, vcenter=None, norm=None, **kwds)
Heatmap of the expression values of genes.
If
groupby
is given, the heatmap is ordered by the respective group. For example, a list of marker genes can be plotted, ordered by clustering. If thegroupby
observation annotation is not categorical the observation annotation is turned into a categorical by binning the data into the number specified innum_categories
.- Parameters:
- adata :
AnnData
Annotated data matrix.
- var_names :
Union
[str
,Sequence
[str
],Mapping
[str
,Union
[str
,Sequence
[str
]]]] var_names
should be a valid subset ofadata.var_names
. Ifvar_names
is a mapping, then the key is used as label to group the values (seevar_group_labels
). The mapping values should be sequences of validadata.var_names
. In this case either coloring or ‘brackets’ are used for the grouping of var names depending on the plot. Whenvar_names
is a mapping, then thevar_group_labels
andvar_group_positions
are set.- groupby :
Union
[str
,Sequence
[str
]] The key of the observation grouping to consider.
- use_raw :
Optional
[bool
] (default:None
) Use
raw
attribute ofadata
if present.- log :
bool
(default:False
) Plot on logarithmic axis.
- num_categories :
int
(default:7
) Only used if groupby observation is not categorical. This value determines the number of groups into which the groupby observation should be subdivided.
- categories_order
Order in which to show the categories. Note: add_dendrogram or add_totals can change the categories order.
- figsize :
Optional
[Tuple
[float
,float
]] (default:None
) Figure size when
multi_panel=True
. Otherwise thercParam['figure.figsize]
value is used. Format is (width, height)- dendrogram :
Union
[bool
,str
] (default:False
) If True or a valid dendrogram key, a dendrogram based on the hierarchical clustering between the
groupby
categories is added. The dendrogram information is computed usingscanpy.tl.dendrogram()
. Iftl.dendrogram
has not been called previously the function is called with default parameters.- gene_symbols :
Optional
[str
] (default:None
) Column name in
.var
DataFrame that stores gene symbols. By defaultvar_names
refer to the index column of the.var
DataFrame. Setting this option allows alternative names to be used.- var_group_positions :
Optional
[Sequence
[Tuple
[int
,int
]]] (default:None
) Use this parameter to highlight groups of
var_names
. This will draw a ‘bracket’ or a color block between the given start and end positions. If the parametervar_group_labels
is set, the corresponding labels are added on top/left. E.g.var_group_positions=[(4,10)]
will add a bracket between the fourthvar_name
and the tenthvar_name
. By giving more positions, more brackets/color blocks are drawn.- var_group_labels :
Optional
[Sequence
[str
]] (default:None
) Labels for each of the
var_group_positions
that want to be highlighted.- var_group_rotation :
Optional
[float
] (default:None
) Label rotation degrees. By default, labels larger than 4 characters are rotated 90 degrees.
- layer :
Optional
[str
] (default:None
) Name of the AnnData object layer that wants to be plotted. By default adata.raw.X is plotted. If
use_raw=False
is set, thenadata.X
is plotted. Iflayer
is set to a valid layer name, then the layer is plotted.layer
takes precedence overuse_raw
.- standard_scale :
Optional
[Literal
['var'
,'obs'
]] (default:None
) Whether or not to standardize that dimension between 0 and 1, meaning for each variable or observation, subtract the minimum and divide each by its maximum.
- swap_axes :
bool
(default:False
) By default, the x axis contains
var_names
(e.g. genes) and the y axis thegroupby
categories (if any). By settingswap_axes
then x are thegroupby
categories and y thevar_names
.- show_gene_labels :
Optional
[bool
] (default:None
) By default gene labels are shown when there are 50 or less genes. Otherwise the labels are removed.
- show :
Optional
[bool
] (default:None
) Show the plot, do not return axis.
- save :
Union
[str
,bool
,None
] (default:None
) If
True
or astr
, save the figure. A string is appended to the default filename. Infer the filetype if ending on {'.pdf'
,'.png'
,'.svg'
}.- ax
A matplotlib axes object. Only works if plotting a single component.
- vmin :
Optional
[float
] (default:None
) The value representing the lower limit of the color scale. Values smaller than vmin are plotted with the same color as vmin.
- vmax :
Optional
[float
] (default:None
) The value representing the upper limit of the color scale. Values larger than vmax are plotted with the same color as vmax.
- vcenter :
Optional
[float
] (default:None
) The value representing the center of the color scale. Useful for diverging colormaps.
- norm :
Optional
[Normalize
] (default:None
) Custom color normalization object from matplotlib. See
https://matplotlib.org/stable/tutorials/colors/colormapnorms.html
for details.- **kwds
Are passed to
matplotlib.pyplot.imshow()
.
- adata :
- Returns:
: List of
Axes
Examples
import scanpy as sc adata = sc.datasets.pbmc68k_reduced() markers = ['C1QA', 'PSAP', 'CD79A', 'CD79B', 'CST3', 'LYZ'] sc.pl.heatmap(adata, markers, groupby='bulk_labels', swap_axes=True)