scanpy.tl.sim
- scanpy.tl.sim(model, params_file=True, tmax=None, branching=None, nrRealizations=None, noiseObs=None, noiseDyn=None, step=None, seed=None, writedir=None)
Simulate dynamic gene expression data [Wittmann09] [Wolf18].
Sample from a stochastic differential equation model built from literature-curated boolean gene regulatory networks, as suggested by [Wittmann09]. The Scanpy implementation is due to [Wolf18].
- Parameters
- model : {‘krumsiek11’, ‘toggleswitch’}
Literal
[‘krumsiek11’, ‘toggleswitch’] Model file in ‘sim_models’ directory.
- params_file :
bool
bool
(default:True
) Read default params from file.
- tmax :
int
|None
Optional
[int
] (default:None
) Number of time steps per realization of time series.
- branching :
bool
|None
Optional
[bool
] (default:None
) Only write realizations that contain new branches.
- nrRealizations :
int
|None
Optional
[int
] (default:None
) Number of realizations.
- noiseObs :
float
|None
Optional
[float
] (default:None
) Observatory/Measurement noise.
- noiseDyn :
float
|None
Optional
[float
] (default:None
) Dynamic noise.
- step :
int
|None
Optional
[int
] (default:None
) Interval for saving state of system.
- seed :
int
|None
Optional
[int
] (default:None
) Seed for generation of random numbers.
- writedir :
str
|Path
|None
Union
[str
,Path
,None
] (default:None
) Path to directory for writing output files.
- model : {‘krumsiek11’, ‘toggleswitch’}
- Return type
- Returns
Annotated data matrix.
Examples
See this use case