scanpy.tl.leiden
- scanpy.tl.leiden(adata, resolution=1, *, restrict_to=None, random_state=0, key_added='leiden', adjacency=None, directed=True, use_weights=True, n_iterations=- 1, partition_type=None, neighbors_key=None, obsp=None, copy=False, **partition_kwargs)
Cluster cells into subgroups [Traag18].
Cluster cells using the Leiden algorithm [Traag18], an improved version of the Louvain algorithm [Blondel08]. It has been proposed for single-cell analysis by [Levine15].
This requires having ran
neighbors()
orbbknn()
first.- Parameters
- adata :
AnnData
AnnData
The annotated data matrix.
- resolution :
float
float
(default:1
) A parameter value controlling the coarseness of the clustering. Higher values lead to more clusters. Set to
None
if overridingpartition_type
to one that doesn’t accept aresolution_parameter
.- random_state :
None
|int
|RandomState
Union
[None
,int
,RandomState
] (default:0
) Change the initialization of the optimization.
- restrict_to :
Tuple
[str
,Sequence
[str
]] |None
Optional
[Tuple
[str
,Sequence
[str
]]] (default:None
) Restrict the clustering to the categories within the key for sample annotation, tuple needs to contain
(obs_key, list_of_categories)
.- key_added :
str
str
(default:'leiden'
) adata.obs
key under which to add the cluster labels.- adjacency :
spmatrix
|None
Optional
[spmatrix
] (default:None
) Sparse adjacency matrix of the graph, defaults to neighbors connectivities.
- directed :
bool
bool
(default:True
) Whether to treat the graph as directed or undirected.
- use_weights :
bool
bool
(default:True
) If
True
, edge weights from the graph are used in the computation (placing more emphasis on stronger edges).- n_iterations :
int
int
(default:-1
) How many iterations of the Leiden clustering algorithm to perform. Positive values above 2 define the total number of iterations to perform, -1 has the algorithm run until it reaches its optimal clustering.
- partition_type :
Type
[MutableVertexPartition
] |None
Optional
[Type
[MutableVertexPartition
]] (default:None
) Type of partition to use. Defaults to
RBConfigurationVertexPartition
. For the available options, consult the documentation forfind_partition()
.- neighbors_key :
str
|None
Optional
[str
] (default:None
) Use neighbors connectivities as adjacency. If not specified, leiden looks .obsp[‘connectivities’] for connectivities (default storage place for pp.neighbors). If specified, leiden looks .obsp[.uns[neighbors_key][‘connectivities_key’]] for connectivities.
- obsp :
str
|None
Optional
[str
] (default:None
) Use .obsp[obsp] as adjacency. You can’t specify both
obsp
andneighbors_key
at the same time.- copy :
bool
bool
(default:False
) Whether to copy
adata
or modify it inplace.- **partition_kwargs
Any further arguments to pass to
~leidenalg.find_partition
(which in turn passes arguments to thepartition_type
).
- adata :
- Return type
- Returns
adata.obs[key_added]
Array of dim (number of samples) that stores the subgroup id (
'0'
,'1'
, …) for each cell.adata.uns['leiden']['params']
A dict with the values for the parameters
resolution
,random_state
, andn_iterations
.