scanpy.tl.ingest
- scanpy.tl.ingest(adata, adata_ref, obs=None, embedding_method=('umap', 'pca'), labeling_method='knn', neighbors_key=None, inplace=True, **kwargs)
Map labels and embeddings from reference data to new data.
→ tutorial: integrating-data-using-ingest
Integrates embeddings and annotations of an
adata
with a reference datasetadata_ref
through projecting on a PCA (or alternate model) that has been fitted on the reference data. The function uses a knn classifier for mapping labels and the UMAP package [McInnes18] for mapping the embeddings.Note
We refer to this asymmetric dataset integration as ingesting annotations from reference data to new data. This is different from learning a joint representation that integrates both datasets in an unbiased way, as CCA (e.g. in Seurat) or a conditional VAE (e.g. in scVI) would do.
You need to run
neighbors()
onadata_ref
before passing it.- Parameters
- adata :
AnnData
AnnData
The annotated data matrix of shape
n_obs
×n_vars
. Rows correspond to cells and columns to genes. This is the dataset without labels and embeddings.- adata_ref :
AnnData
AnnData
The annotated data matrix of shape
n_obs
×n_vars
. Rows correspond to cells and columns to genes. Variables (n_vars
andvar_names
) ofadata_ref
should be the same as inadata
. This is the dataset with labels and embeddings which need to be mapped toadata
.- obs :
str
|Iterable
[str
] |None
Union
[str
,Iterable
[str
],None
] (default:None
) Labels’ keys in
adata_ref.obs
which need to be mapped toadata.obs
(inferred for observation ofadata
).- embedding_method :
str
|Iterable
[str
]Union
[str
,Iterable
[str
]] (default:('umap', 'pca')
) Embeddings in
adata_ref
which need to be mapped toadata
. The only supported values are ‘umap’ and ‘pca’.- labeling_method :
str
str
(default:'knn'
) The method to map labels in
adata_ref.obs
toadata.obs
. The only supported value is ‘knn’.- neighbors_key :
str
|None
Optional
[str
] (default:None
) If not specified, ingest looks adata_ref.uns[‘neighbors’] for neighbors settings and adata_ref.obsp[‘distances’] for distances (default storage places for pp.neighbors). If specified, ingest looks adata_ref.uns[neighbors_key] for neighbors settings and adata_ref.obsp[adata_ref.uns[neighbors_key][‘distances_key’]] for distances.
- inplace :
bool
bool
(default:True
) Only works if
return_joint=False
. Add labels and embeddings to the passedadata
(ifTrue
) or return a copy ofadata
with mapped embeddings and labels.
- adata :
- Returns
if
inplace=False
returns a copy ofadata
with mapped embeddings and labels inobsm
andobs
correspondinglyif
inplace=True
returnsNone
and updatesadata.obsm
andadata.obs
with mapped embeddings and labels
Example
Call sequence:
>>> import scanpy as sc >>> sc.pp.neighbors(adata_ref) >>> sc.tl.umap(adata_ref) >>> sc.tl.ingest(adata, adata_ref, obs='cell_type')