scanpy.pl.embedding_density
- scanpy.pl.embedding_density(adata, basis='umap', key=None, groupby=None, group='all', color_map='YlOrRd', bg_dotsize=80, fg_dotsize=180, vmax=1, vmin=0, vcenter=None, norm=None, ncols=4, hspace=0.25, wspace=None, title=None, show=None, save=None, ax=None, return_fig=None, **kwargs)
Plot the density of cells in an embedding (per condition).
Plots the gaussian kernel density estimates (over condition) from the
sc.tl.embedding_density()
output.This function was written by Sophie Tritschler and implemented into Scanpy by Malte Luecken.
- Parameters
- adata :
AnnData
AnnData
The annotated data matrix.
- basis :
str
str
(default:'umap'
) The embedding over which the density was calculated. This embedded representation should be found in
adata.obsm['X_[basis]']`
.- key :
str
|None
Optional
[str
] (default:None
) Name of the
.obs
covariate that contains the density estimates. Alternatively, passgroupby
.- groupby :
str
|None
Optional
[str
] (default:None
) Name of the condition used in
tl.embedding_density
. Alternatively, passkey
.- group :
str
|List
[str
] |None
Union
[str
,List
[str
],None
] (default:'all'
) The category in the categorical observation annotation to be plotted. For example, ‘G1’ in the cell cycle ‘phase’ covariate. If all categories are to be plotted use group=’all’ (default), If multiple categories want to be plotted use a list (e.g.: [‘G1’, ‘S’]. If the overall density wants to be ploted set group to ‘None’.
- color_map :
Colormap
|str
Union
[Colormap
,str
] (default:'YlOrRd'
) Matplolib color map to use for density plotting.
- bg_dotsize :
int
|None
Optional
[int
] (default:80
) Dot size for background data points not in the
group
.- fg_dotsize :
int
|None
Optional
[int
] (default:180
) Dot size for foreground data points in the
group
.- vmin :
int
|None
Optional
[int
] (default:0
) The value representing the lower limit of the color scale. Values smaller than vmin are plotted with the same color as vmin. vmin can be a number, a string, a function or
None
. If vmin is a string and has the formatpN
, this is interpreted as a vmin=percentile(N). For example vmin=’p1.5’ is interpreted as the 1.5 percentile. If vmin is function, then vmin is interpreted as the return value of the function over the list of values to plot. For example to set vmin tp the mean of the values to plot,def my_vmin(values): return np.mean(values)
and then setvmin=my_vmin
. If vmin is None (default) an automatic minimum value is used as defined by matplotlibscatter
function. When making multiple plots, vmin can be a list of values, one for each plot. For examplevmin=[0.1, 'p1', None, my_vmin]
- vmax :
int
|None
Optional
[int
] (default:1
) The value representing the upper limit of the color scale. The format is the same as for
vmin
.- vcenter :
int
|None
Optional
[int
] (default:None
) The value representing the center of the color scale. Useful for diverging colormaps. The format is the same as for
vmin
. Example: sc.pl.umap(adata, color=’TREM2’, vcenter=’p50’, cmap=’RdBu_r’)- ncols :
int
|None
Optional
[int
] (default:4
) Number of panels per row.
- wspace :
None
None
(default:None
) Adjust the width of the space between multiple panels.
- hspace :
float
|None
Optional
[float
] (default:0.25
) Adjust the height of the space between multiple panels.
- return_fig :
bool
|None
Optional
[bool
] (default:None
) Return the matplotlib figure.
- show :
bool
|None
Optional
[bool
] (default:None
) Show the plot, do not return axis.
- save :
str
|bool
|None
Union
[str
,bool
,None
] (default:None
) If
True
or astr
, save the figure. A string is appended to the default filename. Infer the filetype if ending on {'.pdf'
,'.png'
,'.svg'
}.- ax :
Axes
|None
Optional
[Axes
] (default:None
) A matplotlib axes object. Only works if plotting a single component.
- adata :
Examples
import scanpy as sc adata = sc.datasets.pbmc68k_reduced() sc.tl.umap(adata) sc.tl.embedding_density(adata, basis='umap', groupby='phase')
Plot all categories be default
sc.pl.embedding_density(adata, basis='umap', key='umap_density_phase')
Plot selected categories
sc.pl.embedding_density( adata, basis='umap', key='umap_density_phase', group=['G1', 'S'], )
See also