scanpy.metrics.confusion_matrix
- scanpy.metrics.confusion_matrix(orig, new, data=None, *, normalize=True)
Given an original and new set of labels, create a labelled confusion matrix.
Parameters
origandnewcan either be entries in data or categorical arrays of the same size.- Parameters
- orig :
Series|ndarray|SequenceUnion[Series,ndarray,Sequence] Original labels.
- new :
Series|ndarray|SequenceUnion[Series,ndarray,Sequence] New labels.
- data :
DataFrame|NoneOptional[DataFrame] (default:None) Optional dataframe to fill entries from.
- normalize :
boolbool(default:True) Should the confusion matrix be normalized?
- orig :
Examples
import scanpy as sc; import seaborn as sns pbmc = sc.datasets.pbmc68k_reduced() cmtx = sc.metrics.confusion_matrix("bulk_labels", "louvain", pbmc.obs) sns.heatmap(cmtx)