scanpy.get.rank_genes_groups_df
- scanpy.get.rank_genes_groups_df(adata, group, *, key='rank_genes_groups', pval_cutoff=None, log2fc_min=None, log2fc_max=None, gene_symbols=None)
scanpy.tl.rank_genes_groups()
results in the form of aDataFrame
.- Parameters
- adata :
AnnData
AnnData
Object to get results from.
- group :
str
|Iterable
[str
]Union
[str
,Iterable
[str
]] Which group (as in
scanpy.tl.rank_genes_groups()
’sgroupby
argument) to return results from. Can be a list. All groups are returned if groups isNone
.- key :
str
str
(default:'rank_genes_groups'
) Key differential expression groups were stored under.
- pval_cutoff :
float
|None
Optional
[float
] (default:None
) Return only adjusted p-values below the cutoff.
- log2fc_min :
float
|None
Optional
[float
] (default:None
) Minimum logfc to return.
- log2fc_max :
float
|None
Optional
[float
] (default:None
) Maximum logfc to return.
- gene_symbols :
str
|None
Optional
[str
] (default:None
) Column name in
.var
DataFrame that stores gene symbols. Specifying this will add that column to the returned dataframe.
- adata :
Example
>>> import scanpy as sc >>> pbmc = sc.datasets.pbmc68k_reduced() >>> sc.tl.rank_genes_groups(pbmc, groupby="louvain", use_raw=True) >>> dedf = sc.get.rank_genes_groups_df(pbmc, group="0")