scanpy.external.tl.palantir_results
- scanpy.external.tl.palantir_results(adata, early_cell, ms_data='X_palantir_multiscale', terminal_states=None, knn=30, num_waypoints=1200, n_jobs=- 1, scale_components=True, use_early_cell_as_start=False, max_iterations=25)
Running Palantir
A convenience function that wraps
palantir.core.run_palantir
to compute branch probabilities and waypoints.- Parameters
- adata :
AnnData
AnnData
An AnnData object.
- early_cell :
str
str
Start cell for pseudotime construction.
- ms_data :
str
str
(default:'X_palantir_multiscale'
) Palantir multi scale data matrix,
- terminal_states :
List
|None
Optional
[List
] (default:None
) List of user defined terminal states
- knn :
int
int
(default:30
) Number of nearest neighbors for graph construction.
- num_waypoints :
int
int
(default:1200
) Number of waypoints to sample.
- n_jobs :
int
int
(default:-1
) Number of jobs for parallel processing.
- scale_components :
bool
bool
(default:True
) Transform features by scaling each feature to a given range. Consult the documentation for
sklearn.preprocessing.minmax_scale
.- use_early_cell_as_start :
bool
bool
(default:False
) Use
early_cell
asstart_cell
, instead of determining it from the boundary cells closest to the definedearly_cell
.- max_iterations :
int
int
(default:25
) Maximum number of iterations for pseudotime convergence.
- adata :
- Return type
- Returns
PResults PResults object with pseudotime, entropy, branch probabilities and waypoints.