scanpy.external.tl.cyclone
- scanpy.external.tl.cyclone(adata, marker_pairs=None, *, iterations=1000, min_iter=100, min_pairs=50)
Assigns scores and predicted class to observations [Scialdone15] [Fechtner18].
Calculates scores for each observation and each phase and assigns prediction based on marker pairs indentified by
sandbag()
.This reproduces the approach of [Scialdone15] in the implementation of [Fechtner18].
- Parameters
- adata :
AnnData
AnnData
The annotated data matrix.
- marker_pairs :
Mapping
|None
Optional
[Mapping
[str
,Collection
[Tuple
[str
,str
]]]] (default:None
) Mapping of categories to lists of marker pairs. See
sandbag()
output.- iterations :
int
int
(default:1000
) An integer scalar specifying the number of iterations for random sampling to obtain a cycle score.
- min_iter :
int
int
(default:100
) An integer scalar specifying the minimum number of iterations for score estimation.
- min_pairs :
int
int
(default:50
) An integer scalar specifying the minimum number of pairs for score estimation.
- adata :
- Return type
- Returns
A
DataFrame
with samples as index and categories as columns with scores for each category for each sample and a additional column with the name of the max scoring category for each sample.If
marker_pairs
contains only the cell cycle categories G1, S and G2M an additional columnpypairs_cc_prediction
will be added. Where category S is assigned to samples where G1 and G2M score are < 0.5.