scanpy.experimental.pp.normalize_pearson_residuals_pca#
- scanpy.experimental.pp.normalize_pearson_residuals_pca(adata, *, theta=100, clip=None, n_comps=50, random_state=0, kwargs_pca=mappingproxy({}), mask_var=_empty, use_highly_variable=None, check_values=True, inplace=True)[source]#
Applies analytic Pearson residual normalization and PCA, based on Lause et al. [2021].
The residuals are based on a negative binomial offset model with overdispersion
thetashared across genes. By default, residuals are clipped tosqrt(n_obs), overdispersiontheta=100is used, and PCA is run with 50 components.Operates on the subset of highly variable genes in
adata.var['highly_variable']by default. Expects raw count input.- Parameters:
- adata
AnnData The annotated data matrix of shape
n_obs×n_vars. Rows correspond to cells and columns to genes.- theta
float(default:100) The negative binomial overdispersion parameter
thetafor Pearson residuals. Higher values correspond to less overdispersion (var = mean + mean^2/theta), andtheta=np.infcorresponds to a Poisson model.- clip
float|None(default:None) Determines if and how residuals are clipped:
If
None, residuals are clipped to the interval[-sqrt(n_obs), sqrt(n_obs)], wheren_obsis the number of cells in the dataset (default behavior).If any scalar
c, residuals are clipped to the interval[-c, c]. Setclip=np.inffor no clipping.
- n_comps
int|None(default:50) Number of principal components to compute in the PCA step.
- random_state
float(default:0) Random seed for setting the initial states for the optimization in the PCA step.
- kwargs_pca
Mapping[str,Any] (default:mappingproxy({})) Dictionary of further keyword arguments passed on to
scanpy.pp.pca().- mask_var
ndarray|str|None|Empty(default:_empty) To run only on a certain set of genes given by a boolean array or a string referring to an array in
var. By default, uses.var['highly_variable']if available, else everything.- use_highly_variable
bool|None(default:None) Whether to use highly variable genes only, stored in
.var['highly_variable']. By default uses them if they have been determined beforehand.Deprecated since version 1.10.0: Use
mask_varinstead- check_values
bool(default:True) If
True, checks if counts in selected layer are integers as expected by this function, and return a warning if non-integers are found. Otherwise, proceed without checking. Setting this toFalsecan speed up code for large datasets.- inplace
bool(default:True) If
True, updateadatawith results. Otherwise, return results. See below for details of what is returned.
- adata
- Return type:
- Returns:
If
inplace=False, returns the Pearson residual-based PCA results (asAnnDataobject). Ifinplace=True, updatesadatawith the following fields:.uns['pearson_residuals_normalization']['pearson_residuals_df']The subset of highly variable genes, normalized by Pearson residuals.
.uns['pearson_residuals_normalization']['theta']The used value of the overdisperion parameter theta.
.uns['pearson_residuals_normalization']['clip']The used value of the clipping parameter.
.obsm['X_pca']PCA representation of data after gene selection (if applicable) and Pearson residual normalization.
.varm['PCs']The principal components containing the loadings. When
inplace=Trueanduse_highly_variable=True, this will contain empty rows for the genes not selected..uns['pca']['variance_ratio']Ratio of explained variance.
.uns['pca']['variance']Explained variance, equivalent to the eigenvalues of the covariance matrix.