scanpy.tl.filter_rank_genes_groups
- scanpy.tl.filter_rank_genes_groups(adata, key=None, groupby=None, use_raw=None, key_added='rank_genes_groups_filtered', min_in_group_fraction=0.25, min_fold_change=1, max_out_group_fraction=0.5, compare_abs=False)
Filters out genes based on log fold change and fraction of genes expressing the gene within and outside the
groupby
categories.See
rank_genes_groups()
.Results are stored in
adata.uns[key_added]
(default: ‘rank_genes_groups_filtered’).To preserve the original structure of adata.uns[‘rank_genes_groups’], filtered genes are set to
NaN
.- Parameters:
- adata :
AnnData
- key : default:
None
- groupby : default:
None
- use_raw : default:
None
- key_added : default:
'rank_genes_groups_filtered'
- min_in_group_fraction : default:
0.25
- min_fold_change : default:
1
- max_out_group_fraction : default:
0.5
- compare_abs : default:
False
If
True
, compare absolute values of log fold change withmin_fold_change
.
- adata :
- Return type:
- Returns:
: Same output as
scanpy.tl.rank_genes_groups()
but with filtered genes names set tonan
Examples
>>> import scanpy as sc >>> adata = sc.datasets.pbmc68k_reduced() >>> sc.tl.rank_genes_groups(adata, 'bulk_labels', method='wilcoxon') >>> sc.tl.filter_rank_genes_groups(adata, min_fold_change=3) >>> # visualize results >>> sc.pl.rank_genes_groups(adata, key='rank_genes_groups_filtered') >>> # visualize results using dotplot >>> sc.pl.rank_genes_groups_dotplot(adata, key='rank_genes_groups_filtered')