scanpy.read
- scanpy.read(filename, backed=None, sheet=None, ext=None, delimiter=None, first_column_names=False, backup_url=None, cache=False, cache_compression=Empty.token, **kwargs)
Read file and return
AnnData
object.To speed up reading, consider passing
cache=True
, which creates an hdf5 cache file.- Parameters:
- filename :
Union
[Path
,str
] If the filename has no file extension, it is interpreted as a key for generating a filename via
sc.settings.writedir / (filename + sc.settings.file_format_data)
. This is the same behavior as insc.read(filename, ...)
.- backed :
Optional
[Literal
['r'
,'r+'
]] (default:None
) If
'r'
, loadAnnData
inbacked
mode instead of fully loading it into memory (memory
mode). If you want to modify backed attributes of the AnnData object, you need to choose'r+'
.- sheet :
Optional
[str
] (default:None
) Name of sheet/table in hdf5 or Excel file.
- ext :
Optional
[str
] (default:None
) Extension that indicates the file type. If
None
, uses extension of filename.- delimiter :
Optional
[str
] (default:None
) Delimiter that separates data within text file. If
None
, will split at arbitrary number of white spaces, which is different from enforcing splitting at any single white space' '
.- first_column_names :
bool
(default:False
) Assume the first column stores row names. This is only necessary if these are not strings: strings in the first column are automatically assumed to be row names.
- backup_url :
Optional
[str
] (default:None
) Retrieve the file from an URL if not present on disk.
- cache :
bool
(default:False
) If
False
, read from source, ifTrue
, read from fast ‘h5ad’ cache.- cache_compression :
Union
[Literal
['gzip'
,'lzf'
],None
,Empty
] (default:<Empty.token: 0>
) See the h5py Filter pipeline. (Default:
settings.cache_compression
)- kwargs
Parameters passed to
read_loom()
.
- filename :
- Return type:
- Returns:
: An
AnnData
object