scanpy.pl.rank_genes_groups_stacked_violin
- scanpy.pl.rank_genes_groups_stacked_violin(adata, groups=None, n_genes=None, groupby=None, gene_symbols=None, *, var_names=None, min_logfoldchange=None, key=None, show=None, save=None, return_fig=False, **kwds)
Plot ranking of genes using stacked_violin plot (see
stacked_violin())- Parameters:
- adata :
AnnData Annotated data matrix.
- groups :
Union[str,Sequence[str],None] (default:None) The groups for which to show the gene ranking.
- n_genes :
Optional[int] (default:None) Number of genes to show. This can be a negative number to show for example the down regulated genes. eg: num_genes=-10. Is ignored if
gene_namesis passed.- gene_symbols :
Optional[str] (default:None) Column name in
.varDataFrame that stores gene symbols. By defaultvar_namesrefer to the index column of the.varDataFrame. Setting this option allows alternative names to be used.- groupby :
Optional[str] (default:None) The key of the observation grouping to consider. By default, the groupby is chosen from the rank genes groups parameter but other groupby options can be used. It is expected that groupby is a categorical. If groupby is not a categorical observation, it would be subdivided into
num_categories(seedotplot()).- min_logfoldchange :
Optional[float] (default:None) Value to filter genes in groups if their logfoldchange is less than the min_logfoldchange
- key :
Optional[str] (default:None) Key used to store the ranking results in
adata.uns.- show :
Optional[bool] (default:None) Show the plot, do not return axis.
- save :
Optional[bool] (default:None) If
Trueor astr, save the figure. A string is appended to the default filename. Infer the filetype if ending on {'.pdf','.png','.svg'}.- ax
A matplotlib axes object. Only works if plotting a single component.
- return_fig :
Optional[bool] (default:False) Returns
StackedViolinobject. Useful for fine-tuning the plot. Takes precedence overshow=False.- **kwds
Are passed to
stacked_violin().
- adata :
- Returns:
: If
return_figisTrue, returns aStackedViolinobject, else ifshowis false, return axes dict
Examples
>>> import scanpy as sc >>> adata = sc.datasets.pbmc68k_reduced() >>> sc.tl.rank_genes_groups(adata, 'bulk_labels')
>>> sc.pl.rank_genes_groups_stacked_violin(adata, n_genes=4, ... min_logfoldchange=4, figsize=(8,6))