scanpy.get.obs_df
- scanpy.get.obs_df(adata, keys=(), obsm_keys=(), *, layer=None, gene_symbols=None, use_raw=False)
Return values for observations in adata.
- Parameters:
- adata :
AnnData
AnnData object to get values from.
- keys :
Iterable
[str
] (default:()
) Keys from either
.var_names
,.var[gene_symbols]
, or.obs.columns
.- obsm_keys :
Iterable
[Tuple
[str
,int
]] (default:()
) Tuple of
(key from obsm, column index of obsm[key])
.- layer :
Optional
[str
] (default:None
) Layer of
adata
to use as expression values.- gene_symbols :
Optional
[str
] (default:None
) Column of
adata.var
to search forkeys
in.- use_raw :
bool
(default:False
) Whether to get expression values from
adata.raw
.
- adata :
- Return type:
- Returns:
: A dataframe with
adata.obs_names
as index, and values specified bykeys
andobsm_keys
.
Examples
Getting value for plotting:
>>> pbmc = sc.datasets.pbmc68k_reduced() >>> plotdf = sc.get.obs_df( pbmc, keys=["CD8B", "n_genes"], obsm_keys=[("X_umap", 0), ("X_umap", 1)] ) >>> plotdf.plot.scatter("X_umap0", "X_umap1", c="CD8B")
Calculating mean expression for marker genes by cluster:
>>> pbmc = sc.datasets.pbmc68k_reduced() >>> marker_genes = ['CD79A', 'MS4A1', 'CD8A', 'CD8B', 'LYZ'] >>> genedf = sc.get.obs_df( pbmc, keys=["louvain", *marker_genes] ) >>> grouped = genedf.groupby("louvain") >>> mean, var = grouped.mean(), grouped.var()