scanpy.external.pl.wishbone_marker_trajectory
- scanpy.external.pl.wishbone_marker_trajectory(adata, markers, no_bins=150, smoothing_factor=1, min_delta=0.1, show_variance=False, figsize=None, return_fig=False, show=True, save=None, ax=None)
Plot marker trends along trajectory, and return trajectory branches for further analysis and visualization (heatmap, etc..)
- Parameters:
- adata :
AnnData
Annotated data matrix.
- markers :
Collection
[str
] Iterable of markers/genes to be plotted.
- show_variance :
bool
(default:False
) Logical indicating if the trends should be accompanied with variance.
- no_bins :
int
(default:150
) Number of bins for calculating marker density.
- smoothing_factor :
int
(default:1
) Parameter controlling the degree of smoothing.
- min_delta :
float
(default:0.1
) Minimum difference in marker expression after normalization to show separate trends for the two branches.
- figsize :
Optional
[Tuple
[float
,float
]] (default:None
) width, height
- return_fig :
bool
(default:False
) Return the matplotlib figure.
- show :
bool
(default:True
) Show the plot, do not return axis.
- save :
Union
[str
,bool
,None
] (default:None
) If
True
or astr
, save the figure. A string is appended to the default filename. Infer the filetype if ending on {'.pdf'
,'.png'
,'.svg'
}.- ax :
Optional
[Axes
] (default:None
) A matplotlib axes object. Only works if plotting a single component.
- adata :
- Returns:
: Updates
adata
with the following fields:trunk_wishbone
pandas.DataFrame
(adata.uns
)Computed values before branching
branch1_wishbone
pandas.DataFrame
(adata.uns
)Computed values for the first branch
branch2_wishbone
pandas.DataFrame
(adata.uns
)Computed values for the second branch.