scanpy.external.pl.wishbone_marker_trajectory
- scanpy.external.pl.wishbone_marker_trajectory(adata, markers, no_bins=150, smoothing_factor=1, min_delta=0.1, show_variance=False, figsize=None, return_fig=False, show=True, save=None, ax=None)
Plot marker trends along trajectory, and return trajectory branches for further analysis and visualization (heatmap, etc..)
- Parameters:
- adata :
AnnData Annotated data matrix.
- markers :
Collection[str] Iterable of markers/genes to be plotted.
- show_variance :
bool(default:False) Logical indicating if the trends should be accompanied with variance.
- no_bins :
int(default:150) Number of bins for calculating marker density.
- smoothing_factor :
int(default:1) Parameter controlling the degree of smoothing.
- min_delta :
float(default:0.1) Minimum difference in marker expression after normalization to show separate trends for the two branches.
- figsize :
Optional[Tuple[float,float]] (default:None) width, height
- return_fig :
bool(default:False) Return the matplotlib figure.
- show :
bool(default:True) Show the plot, do not return axis.
- save :
Union[str,bool,None] (default:None) If
Trueor astr, save the figure. A string is appended to the default filename. Infer the filetype if ending on {'.pdf','.png','.svg'}.- ax :
Optional[Axes] (default:None) A matplotlib axes object. Only works if plotting a single component.
- adata :
- Returns:
: Updates
adatawith the following fields:trunk_wishbonepandas.DataFrame(adata.uns)Computed values before branching
branch1_wishbonepandas.DataFrame(adata.uns)Computed values for the first branch
branch2_wishbonepandas.DataFrame(adata.uns)Computed values for the second branch.