scanpy.pl.DotPlot
- class scanpy.pl.DotPlot(adata, var_names, groupby, use_raw=None, log=False, num_categories=7, categories_order=None, title=None, figsize=None, gene_symbols=None, var_group_positions=None, var_group_labels=None, var_group_rotation=None, layer=None, expression_cutoff=0.0, mean_only_expressed=False, standard_scale=None, dot_color_df=None, dot_size_df=None, ax=None, vmin=None, vmax=None, vcenter=None, norm=None, **kwds)
Allows the visualization of two values that are encoded as dot size and color. The size usually represents the fraction of cells (obs) that have a non-zero value for genes (var).
For each var_name and each
groupby
category a dot is plotted. Each dot represents two values: mean expression within each category (visualized by color) and fraction of cells expressing thevar_name
in the category (visualized by the size of the dot). Ifgroupby
is not given, the dotplot assumes that all data belongs to a single category.Note
A gene is considered expressed if the expression value in the
adata
(oradata.raw
) is above the specified threshold which is zero by default.An example of dotplot usage is to visualize, for multiple marker genes, the mean value and the percentage of cells expressing the gene across multiple clusters.
- Parameters:
- adata :
AnnData
Annotated data matrix.
- var_names :
Union
[str
,Sequence
[str
],Mapping
[str
,Union
[str
,Sequence
[str
]]]] var_names
should be a valid subset ofadata.var_names
. Ifvar_names
is a mapping, then the key is used as label to group the values (seevar_group_labels
). The mapping values should be sequences of validadata.var_names
. In this case either coloring or ‘brackets’ are used for the grouping of var names depending on the plot. Whenvar_names
is a mapping, then thevar_group_labels
andvar_group_positions
are set.- groupby :
Union
[str
,Sequence
[str
]] The key of the observation grouping to consider.
- use_raw :
Optional
[bool
] (default:None
) Use
raw
attribute ofadata
if present.- log :
bool
(default:False
) Plot on logarithmic axis.
- num_categories :
int
(default:7
) Only used if groupby observation is not categorical. This value determines the number of groups into which the groupby observation should be subdivided.
- categories_order :
Optional
[Sequence
[str
]] (default:None
) Order in which to show the categories. Note: add_dendrogram or add_totals can change the categories order.
- figsize :
Optional
[Tuple
[float
,float
]] (default:None
) Figure size when
multi_panel=True
. Otherwise thercParam['figure.figsize]
value is used. Format is (width, height)- dendrogram
If True or a valid dendrogram key, a dendrogram based on the hierarchical clustering between the
groupby
categories is added. The dendrogram information is computed usingscanpy.tl.dendrogram()
. Iftl.dendrogram
has not been called previously the function is called with default parameters.- gene_symbols :
Optional
[str
] (default:None
) Column name in
.var
DataFrame that stores gene symbols. By defaultvar_names
refer to the index column of the.var
DataFrame. Setting this option allows alternative names to be used.- var_group_positions :
Optional
[Sequence
[Tuple
[int
,int
]]] (default:None
) Use this parameter to highlight groups of
var_names
. This will draw a ‘bracket’ or a color block between the given start and end positions. If the parametervar_group_labels
is set, the corresponding labels are added on top/left. E.g.var_group_positions=[(4,10)]
will add a bracket between the fourthvar_name
and the tenthvar_name
. By giving more positions, more brackets/color blocks are drawn.- var_group_labels :
Optional
[Sequence
[str
]] (default:None
) Labels for each of the
var_group_positions
that want to be highlighted.- var_group_rotation :
Optional
[float
] (default:None
) Label rotation degrees. By default, labels larger than 4 characters are rotated 90 degrees.
- layer :
Optional
[str
] (default:None
) Name of the AnnData object layer that wants to be plotted. By default adata.raw.X is plotted. If
use_raw=False
is set, thenadata.X
is plotted. Iflayer
is set to a valid layer name, then the layer is plotted.layer
takes precedence overuse_raw
.- title :
Optional
[str
] (default:None
) Title for the figure
- expression_cutoff :
float
(default:0.0
) Expression cutoff that is used for binarizing the gene expression and determining the fraction of cells expressing given genes. A gene is expressed only if the expression value is greater than this threshold.
- mean_only_expressed :
bool
(default:False
) If True, gene expression is averaged only over the cells expressing the given genes.
- standard_scale :
Optional
[Literal
['var'
,'group'
]] (default:None
) Whether or not to standardize that dimension between 0 and 1, meaning for each variable or group, subtract the minimum and divide each by its maximum.
- kwds
Are passed to
matplotlib.pyplot.scatter()
.
- adata :
See also
dotplot()
Simpler way to call DotPlot but with less options.
rank_genes_groups_dotplot()
to plot marker genes identified using the
rank_genes_groups()
function.
Examples
>>> import scanpy as sc >>> adata = sc.datasets.pbmc68k_reduced() >>> markers = ['C1QA', 'PSAP', 'CD79A', 'CD79B', 'CST3', 'LYZ'] >>> sc.pl.DotPlot(adata, markers, groupby='bulk_labels').show()
Using var_names as dict:
>>> markers = {'T-cell': 'CD3D', 'B-cell': 'CD79A', 'myeloid': 'CST3'} >>> sc.pl.DotPlot(adata, markers, groupby='bulk_labels').show()
Attributes
Methods
add_dendrogram
([show, dendrogram_key, size])Show dendrogram based on the hierarchical clustering between the
groupby
categories.add_totals
([show, sort, size, color])Show barplot for the number of cells in in
groupby
category.get_axes
()getdoc
()legend
([show, show_size_legend, ...])Configures dot size and the colorbar legends
Renders the image but does not call
matplotlib.pyplot.show()
.savefig
(filename[, bbox_inches])Save the current figure
show
([return_axes])Show the figure
style
([cmap, color_on, dot_max, dot_min, ...])Modifies plot visual parameters
swap_axes
([swap_axes])Plots a transposed image.